Ozone Storage Effects on Anthocyanin Content and Fungal Growth in Blackberries

M. MARGARET BARTH, CEN ZHOU, JULIEN MERCIER, and FREDERICK A. PAYNE

ABSTRACT

Ozone exposure was assessed for storage of thornless blackberries which are prone to fungal decay. Blackberries were harvested and stored for 12 days at 2°C in 0.0, 0.1, and 0.3 ppm ozone. Berries were evaluated for fungal decay, anthocyanin, color and peroxidase (POD) activity. Ozone storage suppressed fungal development for 12 days, while 20% of control fruits showed decay. The main mold was Botrytis cinerea. Ozone storage did not cause observable injury or defects. By 12 days, anthocyanin content of juice was similar to initial levels for all treatments. Surface color was better retained in 0.1 and 0.3 ppm-stored berries by 5 days and in 0.3 ppm berries by 12 days, by hue angle values. POD was greater in controls and 0.1 ppm samples, and was lowest in 0.3 ppm fruits by 12 days. Ozone storage resulted in market quality extension.

Key Words: ozone, blackberries, anthocyanin, peroxidase, storage

INTRODUCTION

Small fruit including blackberries have a short market life. Once they are harvested, the time they can be stored at low temperatures is limited by fungal spoilage by Botrytis cinerea followed by rapid loss of market quality (Dennis and Mountford, 1975; Dennis, 1983; Sommer, 1985; Ellis et al., 1991). Treatments to maximize shelf life and retard fungal development have been extensively studied (Dennis and Mountford, 1975; El-Kazzaz et al., 1983; Morris et al., 1985; Li and Kader, 1989).

Production and marketing of thornless blackberries has increased. However, blackberries are very susceptible to decay caused by fungi, mainly gray mold rot caused by B. cinerea and soft rot caused by Rhizopus and Macular spp. (Dennis, 1983; Ellis et al., 1991). Preharvest fungicides have been effective in reducing postharvest fungal infection in small fruit; however, fungicides are under active review in many countries due to their possible health risks. Efforts are being made to replace synthetic fungicides by alternative compounds to control decay and improve shelf life. In addition, strains of B. cinerea with resistance to such fungicides have been reported (Maas et al., 1991). As the number of approved fungicides is reduced, there is increased need for technologies which can safely and effectively inhibit fungal growth, reduce postharvest losses, and extend market quality in small fruit.

Ozone (O₃), a strong oxidant, can oxidize contaminants in air and has been demonstrated to limit growth of fungi and abate ethylene in cold rooms (Berger and Hansen, 1965; Heagle, 1973; Dickson et al., 1992). Ozone has been used to control postharvest rot with varying degrees of success in cranberries, strawberries, citrus, peaches, and pears (Berger and Hansen, 1965; Norton et al., 1968; Ridley and Sins, 1967; Harding, 1968; Spotts and Cervantes, 1992). Ozone was used as a brief, prestorage or storage treatment in air or water, or as a continuous atmosphere throughout storage. Early reports of ozone storage as a postharvest treatment were conducted before effi- cient ozone generators were available and before reliable means were available to maintain, measure and control ozone concentrations in coldrooms. Assessment of quality attributes other than fungal growth were often not included and the effects of continuous ozone exposure on fungal growth and quality in small fruits require further investigation. Our objective was to assess continuous ozone exposure (0.0, 0.1, 0.3 ppm) for extending the market life of blackberry fruit.

MATERIALS & METHODS

Fruit and storage

Blackberry fruit (cv Chester) was produced in field plots at the Univ. of Kentucky. Fruit was harvested, transported to the Univ. of Kentucky Agricultural Engineering Pilot Plant, handled according to commercial practice, weighed into perforated clam shell containers (160g) and placed in three coldrooms controlled at 2°C, 90% RH, and ozone concentrations of 0.0, 0.1, 0.3 ppm. Temperature, relative humidity and ozone concentration of each coldroom was computer-controlled (Fig. 1). The temperature was controlled by the refrigeration system ±1.2°C. A sensor (Rotronic Hygrometer, Series HH4, Rotronic Instrument Corp., Huntington, NY) was used to measure relative humidity and was checked using a chart hygrometer (The Dickinson Co., Addison, IL. No. 71207-01). Coldroom temperatures were confirmed with thermometers and by computer program using Professional Basic (Microsoft Corporation, Redmond, WA) was written to record the analog data and generate the ozone generator, electric heater, and humidifier. Accuracy was ±5% for relative humidity, and ±0.01 ppm for ozone concentration.

At each sampling interval (0, 1, 2, 5, and 12 days) duplicate containers were removed for analysis of fungal growth, total anthocyanin content, color, and moisture. POD activity was measured at 0, 2, 5, and 12 days storage. Each experiment was repeated 2 times and an analysis of variance was conducted on the data (SAS Institute, Inc., 1985).

Estimation of fungal decay

Fungal infection was estimated visually during the course of each experiment. Blackberry fruit showing surface mycelial development was sampled, placed in the coldroom, and monitored daily. Relative humidity, transducer, ozone generator, computer, ozone meter, humidifier, heater, samples. Fig. 1—Refrigeration system used to test the effects of ozone on storage life of blackberries. The humidifier, electric heater and ozone generator were placed inside coldroom and engaged using the computer.

Authors Barth and Zhou are affiliated with the Univ. of Kentucky, Dept. of Nutrition & Food Science, 208 Funkhouser Bldg., Lexington, KY 40506-0054. Author Mercier is with the Dept. of Plant Pathology, and Author Payne is with the Dept. of Agricultural Engineering, Univ. of Kentucky, Lexington, KY 40506-0054. Address inquiries to Dr. M.M. Barth.
POD activity

POD activity (Hemedia and Klein, 1990) was determined by spectrophotometric assay for homogenized blackberry tissue over storage time. Duplicate homogenized blackberry samples (1g) were placed in 1.5 mL microfuge tubes and blended with 1 mL of 0.1M phosphate buffer (pH 6.8) using a microhomogenizer for 15 sec. Microfuge tubes containing blended samples were placed in a microcentrifuge and spun at 12,000 rpm for 15 min under cold conditions (5°C). Aliquots of supernatant (10 μL) were placed in 1.5 mL reaction cuvettes (1 cm light path) containing 50 μL substrate and 950 μL buffer, inverted once and placed in a spectrophotometer (Model UV160U, Shimadzu Corp., Japan) for absorbance readings for 1 min. Enzyme activity was expressed as change in A405/min/mL fruit extract.

Moisture content

Moisture content was determined on 5g homogenized blackberry samples using a vacuum oven method (AOAC, 1992). Moisture content and percent solids were calculated.

RESULTS

Estimation of fungal decay

Fungal decay was not observed in the ozone-treated fruit by 12 days. In contrast, 20% of controls (0.0 ppm) showed visible signs of fungal growth and decay by day 12. B. cinerea was the main cause of infection, although Rhizopus sp. caused some decay in the scar area of the fruits.

Total anthocyanin content

Initial mean total anthocyanin content of juice extracted from whole blackberries was 7.2 mg/g (Fig. 2). Anthocyanin content in blackberries stored in air (0.0 ppm) and at 0.1 ppm remained stable throughout 12 days at 2°C. Anthocyanin content was greater in the 0.3 ppm-treated samples by 1 day (9.1 mg/g); however, a steady decrease was observed by 5 day storage followed by a slight increase by 12 days. No significant differences in total anthocyanin content were observed among treatments over 12 days. By 12 days, total anthocyanin levels in all treatment samples were similar to initial levels.

Color retention

Initial mean Hunter hue angle value of the blackberry samples was 18.3 (Fig. 3). Hue angle values increased for all treatments by 2 days, followed by a gradual decrease by 12 days. Red color of intact, whole blackberry fruit was best retained in 0.3 ppm-treated fruit and 12 days of storage as indicated by hue angle: By 5 days and 12 days, hue angle values in the 0.3 ppm samples were similar to initial values. Although color retention was better in the 0.1 ppm-treated vs control fruit by 5 days, no difference was observed in color retention by 12 days storage. No significant differences in ‘L’ or chroma values were observed (data not shown).

POD activity

POD activity in blackberry samples over 12 days storage (Fig. 4) showed initial mean activity was 0.13 but declined in all samples during the first 2 days. POD activity in blackberries stored in air (0.0 ppm) dropped sharply during the initial 2 days in storage to 0.05, but increased to ~0.08 by 5 days and remained at that level throughout storage. In blackberries stored at 0.3 ppm ozone, POD activity declined progressively throughout the course of storage remaining significantly lower than the control (0.06). In contrast, exposure to ozone at 0.1 ppm by 2 days caused POD activity to remain higher than the control by 12 days storage and increased to 0.11.
Fig. 4—Ozone effect on peroxidase activity (ΔA279/nM/min) in blackberries over 12 days at 2°C. (means ± se, n = 6).

DISCUSSION

STORAGE OF BLACKBERRY FRUIT under continuous ozone of 0.1 or 0.3 ppm was very effective in preventing fungal decay for up to 12 days at 2°C. Ozone-treated water was previously shown to inactivate spores of B. cinerea (Ogawa et al., 1990; Spotts and Cervantes, 1992). However, short exposure to ozone was not effective in killing spores of B. cinerea and other fungi at the wounded surface of tomato and pear fruits (Ogawa et al., 1990; Spotts and Cervantes, 1992). Likewise, a short prestorage exposure to ozone was not effective in preventing decay of pear fruit (Spotts and Cervantes, 1992). It thus appears that ozone exposure to ozone throughout storage is more effective in inhibiting storage pathogens as shown here (0.1 and 0.3 ppm, 2°C, 90% RH), and by Harding (1968) for lemons and oranges at 1.0 ppm (14°C, 85% RH), and by Ridley and Sims (1967) in peaches at 0.25 ppm (4–15°C).

Continuous ozone storage at 0.1 and 0.3 ppm significantly extended the market life of thornless blackberries with no observable injuries or decrease in quality over 12 days. While anthocyanin content in fruit stored at 0.1 ppm ozone remained similar to the control, storage at 0.3 ppm resulted in anthocyanin levels fluctuating over time (Fig. 2). An increase in anthocyanin content was observed soon after placement of samples in 0.3 ppm storage. Anthocyanin accumulation was shown previously as a response of plants to ozone (Nouchi and Odaira, 1981). Ozone treatment, especially at 0.3 ppm, had a favorable effect on fruit color, the blackberries remaining significantly redder for most of the storage period (Fig. 3).

PDO is implicated in decoloration of plant products. PDO has been hypothesized to promote oxidative deterioration of anthocyanins by direct and indirect mechanisms (Grommeek and Markakis, 1964). Increased PDO activity in plants has been associated with plants injured by fungi (Kawashima and Uritani, 1965; Johnson and Cunningham, 1972) and ozone (Curtis et al., 1976; Petolino et al., 1983; Patton and Garraway, 1986). PDO activity declined in all treatment groups over 12 days storage, but was lower in the 0.3 ppm-treated samples only after 12 days. Changes in PDO activity did not appear to correlate with loss of fruit quality. Although increases in PDO activity and visible signs of injury are common in various ozone-stressed plant tissues (Patton and Garraway, 1986; Petolino et al., 1983), very different effects on PDO activity were observed in blackberries stored at our ozone levels (Fig. 4). Increased PDO activity can be associated with ozone damage in plants and could participate in the degradation of anthocyanin pigments. Thus the fate of POD in fruit stored at high ozone concentrations will influence market and sensory quality (Grommeek and Markakis, 1964; Patton and Garraway, 1986). Although the control fruit showed visible signs of fungal growth and decay by day 12,

POD was slightly higher than that stored at 0.3 ppm and lower than fruit stored at 0.1 ppm. Possibly the POD activity level we observed were low enough to not significantly affect fruit quality.

Ozone as a storage treatment is a likely alternate to use of fungicides for control of postharvest rot in small fruit. Our computerized control system for ozone storage allowed for maintenance of more constant levels of ozone throughout storage as compared with earlier studies. Ozone storage was beneficial for quality preservation of blackberries and may be effective for quality preservation of other small fruit.

REFERENCES

Ms received 3/29/95; revised 6/30/95; accepted 7/18/95.

Contribution No. 96-06-015 of the Kentucky Agricultural Experiment Station. Authors express appreciation to Sensor Inc. (Goblin, KY) for technical assistance.

1288—JOURNAL OF FOOD SCIENCE—Volume 60, No. 6, 1995
Bridge and tunnel toll elasticities in New York

Some recent evidence

IRA HIRSCHMAN1, CLAIRE MCKNIGHT2, JOHN PUCHER3, ROBERT E. PAASWELL2 & JOSEPH BERECHMAN4
1 Parsons Brinckerhoff Quade and Douglas, One Penn Plaza, NY NY 10119, USA;
2 Department of Civil Engineering, City College of New York, NY, USA; 3 Department of
Urban Planning, Rutgers University, NJ, USA; 4 Public Policy and Economics, Tel Aviv
University, Tel Aviv, Israel

Accepted 8 June 1994

Key words: congestion pricing, elasticity, New York City, road pricing, tolls, travel demand

Abstract. In 1992, the authors carried out a statistical analysis of Triborough Bridge and Tunnel
Authority (TBTA) crossings in New York City, to determine the impact of toll increases on traffic
volumes and revenue. Using twelve years of monthly time-series data, we developed a set of
multiple regression models that estimated traffic volumes on each TBTA bridge and tunnel as
a function of the toll level and other explanatory variables. In most cases, the estimated toll
elasticities were negative and much less than 1.0 in absolute value; the median toll elasticity
for automobiles was found to be -0.10. Our finding that automobile travel demand is highly
inelastic with respect to toll rates is consistent with most previous travel demand studies.

Economists have long advocated comprehensive roadway pricing in the form
of user charges as the most efficient way to allocate scarce roadway capacity
among competing travel demands (Vickrey 1973; Walters 1968; Small 1989).
Actual transport policy, however, lags far behind theories of optimal pricing.
In the U.S., the only form of roadway pricing that currently exists is the tolling
of a small fraction of the nation's bridges, tunnels, and limited access highways.
Most tolled roadways are in the Northeast, and by far the highest concentra-
tion is in the New York City region.

As a practical matter, the use of tolls has been almost exclusively for raising
revenues to finance roadway construction and maintenance. Economists and
transportation planners, by comparison, increasingly view roadway pricing
as the best means to limit travel demand, or at least to reallocate it, in order
to mitigate the growing problem of roadway congestion.

Whether the purpose is to raise revenues or to reallocate traffic volume,
price elasticities of travel demand can provide useful indicators of the respon-
siveness of travel behavior to changes in public policies that affect travel costs.
The more elastic is travel demand, the greater the reduction in travel volume
resulting from an increase in price, and the less the gain in toll revenue. Conversely, the less elastic is travel demand, the less the reduction in travel volume resulting from price increases, and the greater the gain in toll revenue.

There have been many empirical studies of price elasticities for various transportation modes. Comprehensive surveys of such studies have been undertaken by Oum et al. (1992), Goodwin (1992), and Cervero (1990). Almost all of these studies found that travel demand is inelastic with respect to money price. However, elasticities can vary dramatically according to mode, time of day, travel purpose, household income, and by the amount and direction of the price change. Moreover, elasticities can change from one year to another, and their values can vary greatly from one city to another, and even from one specific site to another within the same city. For the purpose of predicting the traffic and revenue impacts of toll increases on specific bridges and tunnels in any city, one must estimate elasticities for the individual facilities in that city.

In 1992 the University Transportation Research Center carried out an econometric analysis for the Triborough Bridge and Tunnel Authority (TBTA) of New York City. The TBTA's objective was to determine the impact of toll increases on revenues, since revenue growth was virtually the only reason the TBTA wanted to raise tolls. From a transportation planner's perspective, however, the impact of toll increases on traffic volumes is more interesting and will be our focus here.

Using twelve years of monthly time-series data, we developed a series of multiple regression models that estimated traffic volumes on each TBTA bridge and tunnel as a function of the toll level and various other explanatory variables. For the purposes of policy analysis, we would ideally have included traffic volumes on all regional bridges and tunnels; however, given our specific assignment and data limitations, our analysis was restricted to the TBTA facilities. The purpose of this paper is to make our regression results and elasticity estimates available for consideration and possible use by other analysts and policy makers.

In the following section, we describe the overall bridge and tunnel network in New York City and the current TBTA toll structure. Next, we examine the available data and the alternative methods for calculating elasticities. Finally, we report the actual elasticity estimates and discuss their policy implications.

Background

The six TBTA bridges and two TBTA tunnels examined in this article connect the five boroughs and, for some boroughs, provide the main roadway link to the rest of the country.¹ (See Table 1 and Fig. 1.)
Table 1. Major TBTA bridges and tunnels.

<table>
<thead>
<tr>
<th>TBTA facility</th>
<th>Boroughs connected</th>
<th>1990 traffic volume</th>
<th>1990 cash toll for automobiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections to Manhattan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brooklyn Battery Tunnel</td>
<td>Manhattan to Brooklyn</td>
<td>19,925,575</td>
<td>$2.50</td>
</tr>
<tr>
<td>Queens Midtown Tunnel</td>
<td>Manhattan to Queens</td>
<td>25,582,201</td>
<td>$2.50</td>
</tr>
<tr>
<td>Triboro Bridge - Manhattan Plaza</td>
<td>Manhattan to Queens</td>
<td>32,239,788</td>
<td>$2.50</td>
</tr>
<tr>
<td>Henry Hudson Bridge</td>
<td>Manhattan to Bronx</td>
<td>19,051,922</td>
<td>$1.25</td>
</tr>
<tr>
<td>Connections between other boroughs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triboro Bridge - Bronx Plaza</td>
<td>Queens to Bronx</td>
<td>29,294,204</td>
<td>$2.50</td>
</tr>
<tr>
<td>Whitestone Bridge</td>
<td>Queens to Bronx</td>
<td>38,158,144</td>
<td>$2.50</td>
</tr>
<tr>
<td>Throgs Neck Bridge</td>
<td>Queens to Bronx</td>
<td>35,422,293</td>
<td>$2.50</td>
</tr>
<tr>
<td>Verrazano Narrows Bridge</td>
<td>Staten Island to Brooklyn</td>
<td>60,983,716</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

1. This article does not include the Marine Parkway Bridge and Cross Bay Bridge. These are minor TBTA facilities, with traffic volumes less than 10 million vehicles per year; additionally, they connect residential neighborhoods.
2. One way cash toll. TBTA tokens purchased in bulk are available at a 15% discount. In addition, Staten Island residents are eligible for a 20% discount on the Verrazano Narrows Bridge.
3. Tolls on the Verrazano Narrows Bridge are collected in one direction only. The toll in that direction is double the toll on most other TBTA facilities, making the average toll per crossing $2.50.

Four of the TBTA facilities (Brooklyn Battery Tunnel, Queens Midtown Tunnel, Triborough Manhattan Plaza, and Henry Hudson Bridge) connect Manhattan to other boroughs. In 1988, these four facilities, out of a total of 20 links to Manhattan, carried about 17 percent of the daily traffic into and out of Manhattan (NYC Department of Transportation 1990). (See Fig. 2.) They are in competition with 13 free bridges that connect Manhattan to other NYC boroughs; the free bridges carried about 56 percent of total daily traffic. Two tunnels and one bridge, operated by the Port Authority of New York and New Jersey, connect Manhattan to New Jersey; all three are tolled and carry 28 percent of the daily traffic.

Three TBTA bridges (Triborough Bronx Plaza, Whitestone Bridge, and Throgs Neck Bridge) connect Queens and Long Island to the Bronx (and the rest of the country). There are no free crossings in competition with these three bridges. The Verrazano Narrows Bridge links Staten Island with Brooklyn, a crucial segment in the most direct route from New Jersey to Long Island. The Verrazano Narrows Bridge competes with the tolled tunnels and bridge from New Jersey to Manhattan operated by the Port Authority.

The TBTA has nine toll classes. At the time of the study in 1992, they varied...
from $1 for motorcycles to $13 for five axle trucks, with surcharges of $0.25 for extra axles. Automobiles, which account for the vast majority of vehicles, paid $2.50. There are two exceptions. On the Henry Hudson Bridge cars and motorcycles, the only vehicles allowed, pay half these rates. And because the Verrazano-Narrows Bridge has one-way tolls, they are twice the rate of the other bridges.

During the 12 years of the study, automobile tolls have increased from $0.75 to $2.50 in six jumps, roughly tripling in nominal terms or increasing 65 percent in real terms. (See Table 2.) The tolls for other classes of vehicles increased by the same percent.

While tolls increased over the 12 year period, combined traffic on the eight TBTA bridges and tunnels grew 20 percent over the period of our study from 1979 to 1991. Traffic into Manhattan on all bridges and tunnels has also grown about 20 percent. However, traffic on the TBTA facilities that connect Manhattan to other boroughs grew only 15 percent in the twelve year period, while traffic on the free East River and Harlem River bridges to Manhattan has grown 17 and 26 percent respectively. Traffic from New Jersey to Manhattan on the tolled Port Authority Bridges, which have no free substitutes, increased by 22 percent (see Fig. 2; NYC Department of Transportation 1992).
argues of $0.25 to $0.75 per vehicle, increasing 65% in the rate of vehicles using the tunnels. However, in the next ten years, traffic on the bridges from New York City have no Department of figure.

Fig. 2. Manhattan Crossings.

Table 2. History of TBTA toll increases.

<table>
<thead>
<tr>
<th>Date</th>
<th>Toll</th>
<th>Increase in toll</th>
<th>Real toll (^1) (1979 US$)</th>
<th>Increase in real toll</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 1979</td>
<td>$0.75</td>
<td>33.3%</td>
<td>$0.75</td>
<td>15.4%</td>
</tr>
<tr>
<td>May 1980</td>
<td>$1.00</td>
<td>20.0%</td>
<td>$0.87</td>
<td>9.2%</td>
</tr>
<tr>
<td>April 1982</td>
<td>$1.25</td>
<td>16.7%</td>
<td>$0.95</td>
<td>7.3%</td>
</tr>
<tr>
<td>January 1984</td>
<td>$1.50</td>
<td>14.3%</td>
<td>$1.02</td>
<td>8.3%</td>
</tr>
<tr>
<td>January 1986</td>
<td>$1.75</td>
<td>25.0%</td>
<td>$1.22</td>
<td>10.8%</td>
</tr>
<tr>
<td>February 1987</td>
<td>$2.00</td>
<td>10.6%</td>
<td>$1.34</td>
<td>10.4%</td>
</tr>
<tr>
<td>July 1989</td>
<td>$2.50</td>
<td>12.5%</td>
<td>$1.24</td>
<td>10.4%</td>
</tr>
<tr>
<td>December 1990</td>
<td>$2.50</td>
<td>12.5%</td>
<td>$1.24</td>
<td>10.4%</td>
</tr>
</tbody>
</table>

Average annual increase 10.6% 4.3%

1. The first and last dates represent the first and last observations in the data. The intermediate dates are the dates of toll increases.
2. One way cash toll.
3. The real toll has been adjusted using the Consumer Price Index for all urban consumers in the New York Metropolitan Region.
Data and methods

We based our analysis on monthly vehicle crossings data between 1979 and 1990, disaggregated by TBTA facility and vehicle class. Prior to 1979, these data were not available.

There are several approaches to estimating elasticities from historical data. The simplest method is to compute the “shrinkage” ratio, which compares the traffic on the facility before and after a toll change. In this technique, the toll elasticity is estimated by computing the ratio of the percentage change in traffic to the percentage change in the toll, using the initial traffic and toll levels as the bases of the calculations.

Although this method has the advantage of being simple, it is apt to yield distorted results because it does not control for changes in other important variables that could affect bridge and tunnel traffic such as employment and fuel prices. Because of this shortcoming, we did not use this method to predict the impacts of future toll increases. However, we computed these ratios as a validity check of our chosen methodology.

A look at the six-month shrinkage ratios in Table 3 suggests that toll increases in New York City can sometimes have surprising consequences. For example, when the TBTA raised the toll in 1980, traffic increased in the subsequent six months on all but one facility. Traffic growth also occurred in the six-month periods following the toll increases in 1982 and 1987.

As noted, we chose not to use the simple shrinkage ratios to make predictions. Instead, we used multiple regression analysis, which allows the analyst to incorporate factors besides the toll into the model, thus isolating the effects

<table>
<thead>
<tr>
<th>Bridge or tunnel</th>
<th>Shrinkage ratios for six month period, year of toll increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brooklyn Battery Tunnel</td>
<td>-0.09</td>
</tr>
<tr>
<td>Queens Midtown Tunnel</td>
<td>0.08</td>
</tr>
<tr>
<td>Triborough Bridge Manhattan Plaza</td>
<td>0.20</td>
</tr>
<tr>
<td>Triborough Bridge Bronx Plaza</td>
<td>0.34</td>
</tr>
<tr>
<td>Bronx Whitestone Bridge</td>
<td>0.39</td>
</tr>
<tr>
<td>Throgs Neck Bridge</td>
<td>0.56</td>
</tr>
<tr>
<td>Henry Hudson Bridge</td>
<td>0.25</td>
</tr>
<tr>
<td>Verrazano Narrows Bridge</td>
<td>na</td>
</tr>
</tbody>
</table>

Note: Shrinkage ratio is calculated as change in traffic volume relative to change in toll, using starting period traffic and toll levels as the bases for calculating the percentage change.
of toll changes by statistically holding constant the other impacts on travel volume.

The dependent variable

For the dependent variable, total monthly traffic volumes on each of the TBTA's crossings, by vehicle class, were available from the TBTA starting in 1979 and extending through 1990. This data set established the regression framework as a monthly time series analysis with 144 observations for each facility. Although the TBTA has nine toll classes, regression models were calibrated for only three groups of vehicles: passenger cars; light trucks; and heavy trucks. Together, these three groups comprise 99.2% of all the TBTA's crossings.

Independent variables

The set of independent variables to explain monthly variations in the number of vehicle crossings included, for passenger cars, the following variables.

Bridge and tunnel tolls

This, of course, is the variable that we were most interested in. For each facility, the real one-way toll for Class 1 vehicles was calculated using the Consumer Price Index for the New York metropolitan area.3

Employment

Employment is a primary determinant of the overall amount of travel (Meyer & Miller 1984; Domenchich & McFadden 1975). While the relationship between employment and work trips is obvious, employment levels may also influence non-work trips since higher employment and income are likely to mean more travel for shopping and cultural events.

For this analysis, the employment variable was measured differently for each facility. Specifically, a "market area" was estimated for each TBTA crossing by computing a weighted average employment for each facility, where the weights were the share of destinations to each county in the region for automobile trips utilizing each particular crossing. These weights were derived from a travel survey conducted by the TBTA in 1989.

Motor vehicle registrations

In addition to the size of the "market" for trip attractions, the analysis also considered the size of the market at the origin. Here, the market was computed as the weighted average of motor vehicle registrations, where the weights are the share of origins from each county. Again, for each facility, origin weights were determined from the TBTA travel survey.
Gasoline prices
The average retail gasoline price was adjusted for inflation using the New York regional Consumer Price Index.

Mass transit fares
Since many commuters, especially those traveling into Manhattan, have the option of driving or using mass transit, the price of transit was also considered for inclusion in our model.

The 1980 transit strike
A strike by New York City Transit Authority bus and subway workers occurred from April 1 to April 11, 1980. To control for the potential increase in bridge travel during the strike, a 0–1 dummy variable was entered into the model.

Seasonal variation
Since the model attempted to explain month-to-month variations in automobile crossings, it was necessary to control for the regular peaks and valleys which occur strictly as a result of the month and season. A number of possible statistical techniques to control for seasonality were considered. Ultimately, our choice was to use 0–1 dummy variables for the months.

A number of other factors that may also influence auto crossings could not be included in the analysis because the data were not available on a monthly basis over the twelve years. For example, parking costs were not included because a summary measure of these prices was not available from existing information sources. Moreover, the complexity and diversity of parking rates, especially among private parking lots and garages in New York City, made it impractical to try to estimate this on our own.

Excluding some variables such as parking prices may have introduced specification error bias. In order for this to occur, there must be some degree of correlation between the excluded variable and the toll variable. (For a good explanation of specification-error bias, see Gujarati 1988.) In that case, the toll variable could incorrectly pick-up some of the independent effects of the excluded variable. If anything, specification error bias in our sample might have led to a small overestimate of the toll elasticity.

A few other variables that were originally included in our specifications during the early model development phases were ultimately dropped from the models. These included monthly takeoffs and landings at regional airports, regional retail sales, and dummy variables for months in which heavy snowstorms occurred. In most cases, these variables were discarded because their contribution to the R^2 value was small, their coefficients were consistently insignificant or had the wrong sign, or because they were strongly correlated with other variables already in the model.
For both the light and heavy truck models, there were fewer independent variables. In addition to the inflation-adjusted toll for that class of vehicles, the model included regional employment and the real price of diesel fuel. In this case, the relationship between employment and truck travel was thought to be less specific and direct than in the case of auto travel: total regional employment was essentially used as a proxy for the general level of economic activity in the region, which in turn was viewed as the best overall determinant of the demand for goods movement. The monthly dummy variables were also entered into the truck models.

Functional form of the model

We experimented with a number of alternative forms including a simple linear model using the raw data for each month; a log transformation of the simple model using the natural logs of the variables; and several variations of a year-to-year change model.

After calibrating models using all the functional forms mentioned above, it was determined that the second option—the simple log transformation model—yielded the best results in terms of interpretability and statistical validity. This model form is presented below:

\[
\ln \text{Crossings} = f(\ln \text{Toll}, + \ln \text{Employment}, + \ln \text{MVR}, + \ln \text{Fare}, \\
+ \ln \text{Gas}, + \text{Strike}, + \ldots \text{monthly dummy variables for January through November})
\]

where:

- \(\ln \text{Crossings}\) = natural log of monthly automobile crossings
- \(\ln \text{Toll}\) = natural log of the real auto toll, that month
- \(\ln \text{Employment}\) = natural log of employment weighted by trip destinations, that month
- \(\ln \text{MVR}\) = natural log of motor vehicle registrations weighted by trip origins, that month
- \(\ln \text{Fare}\) = natural log of the real subway fare, that month
- \(\ln \text{Gas}\) = natural log of real retail gasoline price, that month
- \text{Strike} = 0/1 dummy variable for TA strike months
- Monthly variables = a series of eleven 0/1 dummy variables for January through November

This form is commonly used in economics to specify a demand function. One of the principal advantages of the log form over a standard linear model using raw data is that for an unbiased estimate, the regression coefficient for the price or toll variable can be directly interpreted as the price or toll
elasticity. Mathematically, the coefficient on the toll variable indicates the percentage change in crossings resulting from a one percent change in the toll, independent of the initial level of tolls. The elasticity value is most valid for small changes in the toll. Because the model is stochastic, the true elasticity value will lie somewhere within the range of the confidence limits of the coefficient at a specific probability.

Results

The results of the estimation are summarized in Tables 4 through 6, which correspond to the three vehicle types. Estimated coefficients are shown in the tables for each of the explanatory variables. Each column represents the equation for a specific TBTA bridge or tunnel. In almost all cases, the toll elasticity is very low, consistent with the findings of most other studies. As shown by the F-statistics, most of the models are significant at the 0.01 level. Moreover, the R-square values indicate that in most cases, most of the variation in traffic volumes is explained by the model.

Of greater importance are the results for the individual coefficients, particularly the coefficients for the toll variable. In almost every case, the toll coefficients, which can be interpreted directly as elasticities, are negative and much less than 1.0 in absolute value. This is consistent with virtually all previous transportation demand studies. (See, for example, Oum 1992.) In most cases, these coefficients are statistically significant at the 0.05 level, as measured by the t-statistic. In a few instances, the toll coefficients are negative but not significant. In those cases, it can be assumed that traffic is insensitive to changes in the toll. For example, the toll coefficient for passenger cars on the Triborough Bridge Bronx Plaza was estimated at −0.03, but the result was not statistically significant.

The most price-sensitive demand was found on those facilities which have “free” substitutes. These include the Brooklyn Battery Tunnel and the Henry Hudson Bridge, both of which can be circumvented without major rerouting by utilizing “free” river crossings owned by the City. In the case of the Brooklyn Battery Tunnel, both the Brooklyn and Manhattan bridges are nearby free substitutes, as all three serve lower Manhattan. The tolls on the Henry Hudson Bridge can likewise be avoided by using the alternative free crossings of the Harlem River. In the absence of these free substitutes, the toll elasticities on these crossings would probably have been lower. In addition, Manhattan-bound Brooklyn and Bronx residents are well served by mass transit, a factor which may also help explain the somewhat higher elasticities on the Brooklyn Battery Tunnel and the Henry Hudson Bridge.3

Overall, automobile elasticities were found to be at maximum −0.50, with
Table 4. Summary of regression results for passenger cars.

<table>
<thead>
<tr>
<th></th>
<th>Brooklyn Battery Tunnel</th>
<th>Queens Midtown Tunnel</th>
<th>Triboro Manhattan Plaza</th>
<th>Triboro Bronx Plaza</th>
<th>White Stone Bridge</th>
<th>Throg's Neck Bridge</th>
<th>Henry Hudson Bridge</th>
<th>Verrazano Narrows Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.70</td>
<td>0.76</td>
<td>0.89</td>
<td>0.91</td>
<td>0.95</td>
<td>0.85</td>
<td>0.96</td>
<td>0.90</td>
</tr>
<tr>
<td>F Value</td>
<td>17.30</td>
<td>23.81</td>
<td>58.93</td>
<td>76.40</td>
<td>137.70</td>
<td>42.02</td>
<td>168.61</td>
<td>64.70</td>
</tr>
<tr>
<td>Statistics for explanatory variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln (Toll) Coefficient</td>
<td>-0.26</td>
<td>-0.07</td>
<td>-0.13</td>
<td>-0.03</td>
<td>-0.09</td>
<td>0.19</td>
<td>-0.50</td>
<td>-0.10</td>
</tr>
<tr>
<td>t-Significance</td>
<td>0.0001</td>
<td>0.1579</td>
<td>0.0027</td>
<td>0.5219</td>
<td>0.0505</td>
<td>0.0012</td>
<td>0.0000</td>
<td>0.1469</td>
</tr>
<tr>
<td>Ln (Employment) Coefficient</td>
<td>0.79</td>
<td>1.61</td>
<td>0.55</td>
<td>1.18</td>
<td>0.05</td>
<td>0.84</td>
<td>-0.11</td>
<td>1.14</td>
</tr>
<tr>
<td>t-Significance</td>
<td>0.0000</td>
<td>0.0119</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0004</td>
<td>0.0230</td>
<td>0.0000</td>
<td>0.6512</td>
</tr>
<tr>
<td>Ln (Mt Veh Reg) Coefficient</td>
<td>0.95</td>
<td>0.47</td>
<td>0.98</td>
<td>0.70</td>
<td>0.87</td>
<td>-0.67</td>
<td>1.90</td>
<td>0.17</td>
</tr>
<tr>
<td>t-Significance</td>
<td>0.0000</td>
<td>0.0119</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0004</td>
<td>0.0230</td>
<td>0.0000</td>
<td>0.6512</td>
</tr>
<tr>
<td>Ln (Trans Fare) Coefficient</td>
<td>-0.12</td>
<td>-0.02</td>
<td>-0.10</td>
<td>0.23</td>
<td>0.07</td>
<td>-0.20</td>
<td>-0.23</td>
<td>0.08</td>
</tr>
<tr>
<td>t-Significance</td>
<td>0.0072</td>
<td>0.7570</td>
<td>0.0224</td>
<td>0.0001</td>
<td>0.0550</td>
<td>0.0019</td>
<td>0.0053</td>
<td>0.2138</td>
</tr>
<tr>
<td>Ln (Gas Price) Coefficient</td>
<td>0.14</td>
<td>0.16</td>
<td>0.07</td>
<td>0.07</td>
<td>0.05</td>
<td>-0.04</td>
<td>-0.32</td>
<td>-0.03</td>
</tr>
<tr>
<td>t-Significance</td>
<td>0.0005</td>
<td>0.0005</td>
<td>0.0555</td>
<td>0.0394</td>
<td>0.0384</td>
<td>0.2841</td>
<td>0.0000</td>
<td>0.5570</td>
</tr>
<tr>
<td>Ln (Strike) Coefficient</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>-0.02</td>
<td>0.01</td>
<td>-0.02</td>
<td>-0.08</td>
<td>0.01</td>
</tr>
<tr>
<td>t-Significance</td>
<td>0.5851</td>
<td>0.8278</td>
<td>0.8434</td>
<td>0.5940</td>
<td>0.8027</td>
<td>0.7252</td>
<td>0.1561</td>
<td>0.8903</td>
</tr>
</tbody>
</table>

Note: In all equations, the dependent variable is natural log of monthly passenger car crossings on each TBTA facility.
a median value of –0.10, indicating considerable inelasticity. Of the eight toll facilities, five exhibited reasonable elasticities around the median of –0.10. Toll elasticities for trucks, although somewhat higher, were also inelastic on average.

The coefficients for employment and motor vehicle registrations appear reasonable; in most equations, they are positive and large. For instance, the employment coefficient was found to be positive and significant in six out of eight cases. Employment coefficients obtained from the truck models conformed with expectations even more frequently. Although there was considerable variability in the size of the employment coefficients, the impact of employment on travel was generally substantial, ranging in the case of passenger cars from 0.55 on the Triborough Bridge Manhattan Plaza to 1.61 for the Queens Midtown Tunnel. Similarly, motor vehicle registrations were found to have a major impact, with significant positive coefficients ranging between 0.47 in the case of the Queens Midtown Tunnel and 1.89 on the Henry Hudson Bridge.

The results for the transit fare, gasoline price, and strike variables are less credible, as they are often either statistically insignificant or counterintuitive. For example, the transit fare variable was negative in several instances, while the coefficient for gasoline prices was sometimes positive. Our best explanation for these results is the intercorrelation among several of the independent variables. For example, the employment variable is correlated with motor vehicle registrations, the transit fare, and gasoline prices.

Policy considerations

The key question facing local transportation policy makers is whether raising bridge and tunnel tolls can help to mitigate the severe congestion problems in Manhattan's CBD. Our regression results suggest that traffic volumes into and out of Manhattan are not very sensitive to gradual toll increases. It is important to keep in mind, however, that our elasticity findings were based on small percentage changes in TDBA tolls, amounting on average to about four percent per year after inflation.

In contrast, a steep and sudden increase in tolls – say, an immediate doubling or tripling – would almost certainly have a much larger effect on traffic. At higher toll levels, drivers may be much more sensitive to increases. However, large increases of this magnitude would be extremely difficult to implement in New York City. As documented by Zupan (1993), there are formidable political obstacles to major toll increases of any kind on the bridges and tunnels leading into Manhattan. Congestion tolls would require completely new charges on currently free facilities, as well as much higher rates on currently tolled
ty. Of the eight median of 0.10. also inelastic on
trations appear for instance, the
ificant in six out
truck models
th was con
3 in the case of
in Plaza to 1.61
gist...ions were
in on the Henry
arias are less counterintuitive.
stances, while
Our best expla
ed with motor
whether raising
stic volumes into
es were based
about
mediate doubling
on traffic. At
es. However,
ly to implement
formidable
gas and tunnels
ily new charges
currently tolled
crossings. In both cases, large increases and new tolls would run up against powerful resistance from organized political constituencies in the outlying boroughs and New Jersey.
Although it would be unrealistic for local transportation officials to rely exclusively on tolls for congestion management, a carefully coordinated set of market-based strategies, including higher tolls as an essential component, could be effective and acceptable. Congestion tolls would have to be complemented by higher parking taxes, increased metered rates for on-street parking, strict limits on the supply of CBD parking, incentives to eliminate employer-subsidized parking, and higher gasoline taxes.
Our analysis focused on toll elasticities. In fact, bridge and tunnel tolls comprise only a small proportion — about one-quarter — of the total variable cost of a trip into and out of Manhattan. Because of this, the total price elasticity of automobile travel into the CBD is probably higher than the partial elasticity with respect to tolls alone. Assuming, for example, that the average driver into Manhattan pays $6.00 per day for tolls (the current base TBTA toll), $10 for parking and $9.00 for other costs such as gas, oil, and vehicle depreciation, our median auto toll elasticity of 0.10 could imply an overall price elasticity of approximately 0.40. Although that is still inelastic, it suggests that a multi-faceted price strategy could substantially shift travel behavior.
There would be few physical or administrative problems in raising parking fees, tolls, and gasoline taxes immediately. Likewise, the technical problem of instituting tolls on the currently free East River and Harlem River Bridges is soluble, given the recent innovations in toll collection technology. Overcoming political opposition would require an intensive public education campaign, creation of the necessary political alliances, and somehow convincing even those who would pay the higher costs of auto use that they too would ultimately benefit.
One important key to implementation would be a gradual, predictable phase-in over time. That would facilitate planning for future location decisions of both firms and households. It would also give travelers time to adjust their travel behavior accordingly and would avoid the sudden shock of precipitous price increases in the form of higher tolls, parking charges, and gasoline taxes. Such a gradual phase-in would lessen the impression of punitive price increases.

Wider applicability of study findings
The low toll elasticity values we estimated for the TBTA bridges and tunnels in New York fall within the same range as money price elasticities estimated in other studies. One might expect that the unique circumstances in New
York would lead to very different results than those found elsewhere in the United States. Instead, the results are similar to those that have been estimated for other parts of the country. Our elasticity estimates provide strong additional evidence that auto travel is inelastic with respect to tolls across a wide variety of settings, at least for moderate increases.

Nevertheless, findings such as ours must be used with caution when extrapolating to specific toll facilities elsewhere. As noted earlier, drivers’ responses to tolls can vary depending on many circumstances, including the availability of highway and transit substitutes, driver expectations, congestion levels, the level of the toll, income and land use patterns in an area, and time-of-day and direction of travel. Indeed, our own results demonstrate that toll elasticities can vary substantially among toll facilities even within the same urban area. Outside the New York area, even greater underlying differences are likely to be found. One would anticipate, for instance, a higher elasticity on a suburban toll bridge located a few miles downstream of a free river crossing. The alternative free crossings in New York City, in contrast, are highly congested, especially during peak hours and in the peak direction, thus limiting their use as substitutes for the toll bridges and tunnels. Moreover, tolls are so familiar to New York area drivers that they are an expected part of life. In contrast, introducing tolls in locales where they have not previously existed could elicit a much sharper response, particularly in the short run.

In light of such wide variability in background conditions, it is our view that a site specific analysis is almost always required in order to derive reliable forecasts of the impact of new or higher tolls on a particular facility.

Acknowledgements

The study summarized in this article was supported by grants from the Triborough Bridge and Tunnel Authority and the University Transportation Research Center, Region 2 (sponsored by USDOT). The authors thank Lawrence Yermack of the TBTA for his role as project manager in the study.

Notes

1. The Triborough Bridge actually has two connections: from Queens to Manhattan and from Queens to the Bronx. For the purposes of this article, these were counted as two bridges.
2. In the case of the Verrazano Narrows Bridge, an additional adjustment had to be made for the change from two-way to one-way toll collection in March 1986. To control for that discontinuity, a dummy variable was used in the Verrazano Narrows Bridge model to distinguish the months after the change from those before.
3. Surprisingly, there were two cases where the toll variable was estimated to be positive: for